An Optimal Algorithm for Computing Visibility in the Plane
نویسندگان
چکیده
منابع مشابه
An Optimal Algorithm for Computing the Spherical Depth of Points in the Plane
For a distribution function F on R and a point q ∈ R, the spherical depth SphD(q;F ) is defined to be the probability that a point q is contained inside a random closed hyper-ball obtained from a pair of points from F . The spherical depth SphD(q;S) is also defined for an arbitrary data set S ⊆ R and q ∈ R. This definition is based on counting all of the closed hyper-balls, obtained from pairs ...
متن کاملAn Optimal Algorithm for Euclidean Shortest Paths in the Plane
We propose an optimal-time algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(n logn) and requires O(n logn) space, where n is the total number of vertices in the obstacle polygons. The algorithm is based on an eecient implementation of wavefront propagati...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn Optimal Algorithm Computing Edge-to-Edge Visibility in a Simple Polygon
Let P be a simple polygon with n vertices. We present a new O(n)-time algorithm to compute the visible part of one edge from another edge of P . The algorithm does not alter the input and only uses O(1) variables and is therefore a constant-workspace algorithm. The algorithm can be used to make a constant-workspace algorithm for computing the weak visibility polygon from an edge in O(mn) time, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 1995
ISSN: 0097-5397,1095-7111
DOI: 10.1137/s0097539791221505